TSMC 台積電特殊製程

TSMC 台積電特殊製程

TSMC Integrated specialty technology platform provided optimal system-level solutions

台積電提供行業領先的專業技術組合,以補充其先進的技術領導地位。 公司全面的專業技術滿足特定客戶需求,包括 MEMS、CMOS 圖像傳感器、嵌入式 NVM、RF、模擬、高壓和 BCD-Power 工藝等。 台積電的專業技術涵蓋廣泛的應用,包括移動設備、汽車電子系統、醫療系統、可穿戴設備和物聯網,豐富了我們的生活。

 TSMC provides an industry-leading specialty technologies portfolio that complements its advanced technology leadership. The Company’s comprehensive specialty technologies meet specific customer needs and include MEMS, CMOS Image Sensor, Embedded NVM, RF, Analog, High Voltage, and BCD-Power processes, and so on. TSMC’s specialty technologies cover a broad range of applications, including mobile devices, automobile electronic systems, medical systems, wearables, and the Internet of Things, that enrich our lives.

MEMS Technology 

TSMC introduced world’s first Sensor SoC process technology in 2011.

This technology manufactures…

台積電於2011年推出全球首創的Sensor SoC製程技術,此技術結合台積電業界領先的互補金屬氧化物半導體(CMOS)與晶圓堆疊技術,製造單片式微機電系統(MEMS)。

TSMC Sensor SoC 技術範圍從 0.5 微米 (µm) 到 0.11µm,支持包括重力傳感器、陀螺儀、壓力計、微流體和生物基因芯片在內的應用。

2018年,台積電成功交付全球首款CMOS-MEMS(Micro-electromechanical Systems)單片電容式氣壓計,其高度敏感度小至5cm,封裝尺寸略小於1mm2,適用於各種系統應用, 包括個人活動跟踪和室內導航。

未來計劃包括開發下一代高靈敏度薄型麥克風、MEMS Si-pillar TSV(矽通孔)技術。

eFlash

Non-Volatile memory(NVM)includes the industriy common

One-Time-Programmable memory(OTP)

非揮發性內存(NVM)包括行業通用的一次性可編程內存(OTP),多個時間可編程內存(MTP),閃存內存(閃存)和下一代磁性RAM(MRAM)和電阻RAM的NVM (RRAM)。

TSMC提供了Foundry嵌入式NVM技術的最先進,最全面的投資組合,具有最快的計算能力,最小的閃光燈尺寸和最低的功耗。

TSMC的嵌入式閃存技術範圍從0.5微米(µm)到40nm,並提供了許多閃存IP選項,以滿足各種產品設計要求。 TSMC 2018年將嵌入式閃光燈晶片的總發貨總計在全球半導體行業中排名第一的客戶,支持各種應用程序,包括消費電子,便攜式電子設備,家用電器,智能卡,計算機,有線和無線通信,自動電子設備,自動電子設備,醫療設備,醫療設備,醫療設備,醫療設備,計算機,有線和無線電話 ,工業自動化,物聯網和可穿戴設備。

同時,TSMC於2018年開始為汽車嵌入式閃光技術的嵌入式閃光技術生產,現在正在開發28nm嵌入式閃光燈。 預計該技術資格將在2019年為汽車電子和微控制器單元(MCU)提供。 同時,TSMC還正在開發嵌入式MRAM,並同時嵌入RRAM,並同時滿足客戶的持續性能改進和減少功率減少。 40nm ULP嵌入式電阻隨機訪問記憶(RRAM)技術,該技術於2017年底開始風險生產,完成了2018年10,000個耐力週期的消費者級資格測試。該技術是PDK兼容PDK的CMOS(互補金屬氧化物Semiconductor) 以及用於包括無線MCU,IoT和可穿戴設備在內的應用程序的IP使用。 22NM ULL磁隨機訪問記憶(MRAM)技術進步良好,表現為回流功能並通過JEDEC 168小時高溫操作生活(HTOL)可靠性驗證在2018年底。通過IP自定義,MRAM可以提供各種應用程序,例如人工製作的應用程序, MCU的情報和Eflash替代品。

CMOS Image Sensor
TSMC provides foundry’s most comprehensive CMOS Image Sensor process technology portfolio

TSMC提供了晶圓廠最全面的CMOS圖像傳感器過程技術組合,具有出色的分辨率,更快的速度和較低的功耗。

TSMC的CMOS圖像傳感器技術的範圍從0.5微米(µm)到28NM節點,並支持各種應用程序,包括PC攝影機,數位相機和攝影錄影器,數位電視,玩具,安全監控系統,攝影機,和其他便攜式設備。

在2018年,TSMC在CMOS圖像傳感器技術方面取得了多項成就,包括:(1)用於移動應用程序的亞微米像素的新一代傳感器的質量生產; (2)成功開發了用於3D範圍傳感應用的GE-ON SI傳感器,其性能優於SI傳感器; (3)成功地將晶圓堆棧技術應用於原型單光子雪崩二極管(SPAD)傳感器陣列技術,用於3D飛行時間應用。

CMOS IMAGE SENSOR

MS/RF

TSMC provides foundry’s mosat advances and comprehensive portfolio of

Mixed Signal/RF CMOS(MS/RF) technology

TSMC 提供鑄造廠最先進、最全面的混合信號/RF CMOS (MS/RF) 技術組合。 台積電與其客戶共同在MS/RF領域推出多項創新,佔據該市場75%的份額。 TSMC MS/RF 技術支持多種通信應用,包括智能手機、無線、藍牙等。

16FFC RF帶領代工廠於2018年上半年開始為客戶量產第五代(5G)移動網絡芯片,此技術已擴展至下一代無線局域網(WLAN 802.11ax)和毫米波( mmWave)應用,以及無線連接應用,例如使用 5G 移動網絡的智能手機。 隨著台積電不斷推進16FFC RF技術,這項更具成本效益的技術將用於雷達和AR/VR等更多應用,以降低芯片功耗和裸片尺寸。

同時,22nm RF(22ULP/ULL RF)技術在 2018 年擴展了對超低洩漏器件、磁性隨機存取存儲器(MRAM)和電阻式隨機存取存儲器(RRAM)的支持,除了高 fT(截止頻率) ) 設備。 這進一步支持了 5G 毫米波移動通信和物聯網應用的芯片開發。

此外,28nm RF(28HPC+ RF)技術於2018年交付代工廠首個RF工藝設計套件(PDK),為5G mmWave RF和汽車雷達產品設計提供110GHz mmWave和150°C汽車級等的支持。

Analog
TSMC provides foundry’s most competitive and cost-effective analog process technology portfolio

台積電提供代工最具競爭力和成本效益的模擬工藝技術組合,具有高精度、低噪聲、低功耗和卓越的成本效益。

運用台積電業界領先的模擬製程技術,為客戶提供更具競爭力的模擬芯片,作為現實世界與數字系統之間的通訊接口,將自然模擬的生物特徵、光、熱、速度、壓力、溫度和聲音準確地轉換為數字信號。

該公司全面的模擬工藝產品組合提供從 0.5µm 到 16nm 的選項,適用於智能手機、平板電腦、汽車電子、計算機、音頻、電子醫療設備和家用電器等應用。

HV
TSMC provides foundry’s most competitive High Voltage(HV高壓) technology portfolio. TSMC’s HV processes range…

TSMC 提供晶圓廠最具競爭力的高壓 (HV) 技術組合。

台積電的高壓工藝範圍從 0.5 微米 (μm) 到 40 納米,可為面板驅動器提供更高質量的圖像,並為包括電視、智能手機、平板電腦、智能手錶和其他便攜式電子產品在內的應用提供更低的功耗。

2018年,台積電引領智能手機有機發光二極管(OLED)面板發展趨勢,台積電推出全球領先的40納米高壓(HV)技術。 該技術為客戶設計更具競爭力的OLED驅動器提供了世界領先的邏輯和SRAM密度。

BCD 

TSMC provides foundry’s most comprehensive 

and competitive Bipolar-CMOS-DMOS(BCD)

台積電提供晶圓廠最全面、最具競爭力的Bipolar-CMOS-DMOS (BCD)電源管理製程技術,也是第一家採用300mm晶圓生產BCD電源管理製程的晶圓廠。

台積電BCD電源管理工藝集成度更高、佔位面積更小、功耗更低,涵蓋0.6µm至40nm節點。 通過該工藝生產的客戶芯片可提供更穩定、更高效的電源,消耗更少的能源,非常適合包括消費電子產品、通信設備和計算機在內的應用。

台積電12英寸0.13μm BCD Plus工藝較之前0.13μm BCD工藝更具成本競爭力,已通過客戶製程驗證,於2017年下半年開始量產。

0.18μm第三代BCD於2017年下半年開始量產,並於2018年通過AEC-Q100 Grade-1認證。與第二代BCD相比,該技術具有更優越的成本競爭力。

台積電8吋90奈米BCD工藝有望通過驗證,現正接客戶流片。 與 0.18μm BCD 平台相比,該技術具有更高的成本競爭力,尤其是在 5G 智能手機的電源管理 IC 平台中。

台積電12吋40奈米BCD技術,整合RRAM模型,預計2019年8月通過資格認證。此技術為智能手機、物聯網等的高速通訊介面提供電源效率。

關鍵字 KEYWORD #TSMC,台積電,製程, Technology,portfolio,CMOS

Sources:
https://www.tsmc.com/chinese/dedicatedFoundry/technology/specialty
TSMC Integrated specialty technology platform provided optimal system-level solutions

MEMS technology

TSMC introduced the world’s first Sensor SoC process technology in 2011. This technology manufactures monolithic Micro Electro Mechanical Systems (MEMS) by integrating TSMC’s industry-leading Complementary Metal-Oxide-Semiconductor (CMOS) and wafer stacking technologies.

TSMC Sensor SoC technology ranges from 0.5-micron (µm) to 0.11µm and supports applications including G-Sensors, gyroscopes, pressure gauges, microfluidic, and biological gene chips.

In 2018, TSMC successfully delivered the world’s first CMOS-MEMS (Micro-electromechanical Systems) monolithic capacitive barometer, which features sensitivity to altitude changes as small as 5 cm and fits in a package of slightly less than 1 mm2, for various system applications, including personal activity tracking and indoor navigation.

Future plans include the development of next-generation high-sensitivity thin microphone, MEMS Si-pillar TSV (through silicon via) technology.

CMOS Inage Sensor

TSMC provides foundry’s most comprehensive CMOS Image Sensor process technology portfolio, featuring superior resolution, faster speed, and lower power consumption.

TSMC’s CMOS Image Sensor technology ranges from 0.5-micron (µm) to 28nm nodes and supports a variety of applications, including PC cameras, digital cameras and recorders, digital TVs, toys, security systems, video cameras and other portable devices.

In 2018, TSMC had several achievements in CMOS image sensor technology including: (1) mass-production of new-generation sensors of sub-micron pixel for mobile application; (2) successful development of Ge-on-Si sensor for 3D range sensing applications with performance superior to Si sensor; (3) successful application of wafer stack technology to prototype Single Photon Avalanche Diode (SPAD) sensor array technology for 3D time-of-flight applications.

eFLASH

Non-Volatile Memory (NVM) includes the industry common One-Time-Programmable memory (OTP), Multiple-Time-Programmable memory (MTP), Flash memory (Flash), and next generation NVM of Magnetic RAM (MRAM) and Resistive RAM (RRAM).

TSMC provides foundry’s most advanced and comprehensive portfolio of Embedded NVM technologies, featuring fastest computing capacity, smallest flash dimensions, and lowest power consumption.

TSMC’s Embedded Flash technology ranges from 0.5-micron (µm) to 40nm and provides a number of flash IP options to meet a variety of product design requirements. TSMC’s 2018 total shipment of Embedded Flash wafers to customers ranked No.1 in the global semiconductor industry, supporting a wide range of applications including consumer electronics, portable electronics, home appliances, smartcards, computers, wired and wireless communications, automotive electronics, medical equipment, industrial automation, the Internet of Things, and wearables.

Meanwhile, TSMC started volume production of 40nm Embedded Flash technology for automotive in 2018, and is now developing the 28nm Embedded Flash. This technical qualification is expected in 2019 for automobile electronics and micro controller units (MCU). At the mean time, TSMC is also developing Embedded MRAM, and Embedded RRAM in parallel to fulfill customers’ need of continuous performance improvement and power-consumption reduction. 40nm ULP embedded resistive random access memory (RRAM) technology, which began risk production at the end of 2017, completed consumer grade qualification test for 10,000 cycles of endurance in 2018. This technology is fully CMOS (Complementary Metal Oxide Semiconductor) logic compatible for PDK and IP re-use for applications including wireless MCU, IoT and wearable devices. 22nm ULL magnetic random access memory (MRAM) technology progressed well, demonstrated reflow capability and passed JEDEC 168 hours high-temperature operating life (HTOL) reliability validation at the end of 2018. Through IP customization, MRAMs can serve various applications, such as artificial intelligence and eFlash replacement for MCU.

MS/RF Mixed Signal

TSMC provides foundry’s most advanced and comprehensive portfolio of Mixed Signal/RF CMOS (MS/RF) technology. TSMC and its customers jointly unleash a number of innovations in the MS/RF segment and account for a 75% share of this market. TSMC MS/RF technology supports multiple communication applications, including smartphones, wireless, Bluetooth, and others.

16FFC RF led the foundry to start volume production of the fifth generation (5G) mobile network chips for customers in the first half of 2018. This technology has been extended to the next generation Wireless Local Area Network (WLAN 802.11ax) and Millimeter Wave (mmWave) applications, as well as to wireless connectivity applications such as smartphones using the 5G mobile network. As TSMC continues to advance 16FFC RF technology, this more cost-effective technology will be used in more applications such as radar and AR/VR, to reduce chip power consumption and die size.

Meanwhile, 22nm RF (22ULP/ULL RF) technology extended its support for ultra-low leakage devices, magnetic random access memory (MRAM), and resistive random access memory (RRAM) in 2018, in addition to high fT (cut-off frequency) devices. This further supports chip development for 5G mm Wave mobile communication and IoT applications.

In addition, 28nm RF (28HPC+ RF) technology delivered the foundry’s first RF process design kit (PDK) in 2018, providing support for 110GHz mmWave and 150°C automotive grade and so on for 5G mmWave RF and automotive radar product designs.

Analog

TSMC provides foundry’s most competitive and cost-effective analog process technology portfolio, featuring high accuracy, low noise, low power consumption, and superior cost effectiveness.

Using TSMC’s industry-leading analog process technology, customers deliver more competitive analog chips that, as the communication interface between the real world and digital systems, convert natural analog biometrics, light, heat, speed, pressure, temperature and sound into digital signals accurately.

The Company’s comprehensive analog process portfolio offers options from 0.5µm to 16nm for applications including smartphones, tablets, automotive electronics, computers, audio, electronic medical equipment and home appliances.

HV High Voltage

TSMC provides foundry’s most competitive High Voltage (HV) technology portfolio.

TSMC’s HV processes range from 0.5-micron (μm) to 40nm, featuring higher quality image for panel drivers and lower power consumption for application including TVs, smartphones, tablets, smart watches and other portable electronic products.

In 2018, TSMC set the trend for the smartphone organic light emitting diode (OLED) panel development, TSMC launched a world-leading 40nm high-voltage (HV) technology. This technology provides world-leading logic and SRAM density for customers to design more competitive OLED drivers.

BCD Bipolar

TSMC provides foundry’s most comprehensive and competitive Bipolar-CMOS-DMOS (BCD) Power Management process technologies and is also the first foundry to adopt 300mm wafer production for the BCD Power Management process.

TSMC BCD Power Management process features higher integration, smaller footprint, lower power consumption, covering nodes from 0.6µm to 40nm. Customers chips produced by the process provide more stable and efficient power supplies that consume less energy, ideal for applications including consumer electronics, communication devices, and computers.

TSMC’s 12-inch 0.13μm BCD Plus technology, which provides superior cost competitiveness compared to the prior 0.13μm BCD technology, passed process validation by customers and started production in the second half of 2017.

0.18μm BCD third generation, which started volume production in the second half of 2017, passed AEC-Q100 Grade-1 qualification in 2018. This technology provides superior cost competitiveness compared to the second generation BCD.

TSMC’s 8-inch 90nm BCD technology is expected to pass the qualification and is now receiving tape-outs from customers. This technology provides superior cost competitiveness compared to the 0.18μm BCD platform, especially in power management IC Platform for 5G smartphones.

TSMC’s 12-inch 40nm BCD technology, which integrates RRAM model, is expected to pass the qualification in August 2019. This technology provides power efficiency for high-speed communication interface on smartphones, IoT, and so on.